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Abstract

Glass surfaces are omnipresent in our daily lives and often go unnoticed by the
majority of us. While humans are generally able to infer their locations and
thus avoid collisions, it can be difficult for current object detection systems to
handle them due to the transparent nature of glass surfaces. Previous methods
approached the problem by extracting global context information to obtain priors
such as object boundaries and reflections. However, their performances cannot be
guaranteed when these deterministic features are not available. We observe that
humans often reason through the semantic context of the environment, which offers
insights into the categories of and proximity between entities that are expected
to appear in the surrounding. For example, the odds of the co-occurrence of
glass windows with walls and curtains are generally higher than that with other
objects, such as cars and trees, which have relatively less semantic relevance.
Based on this observation, we propose a model named Glass Semantic Network
(‘GlassSemNet’) that integrates the contextual relationship of the scenes for glass
surface detection with two novel modules: (1) Scene Aware Activation (SAA)
Module to adaptively filter critical channels with respect to spatial and semantic
features, and (2) Context Correlation Attention (CCA) Module to progressively
learn the contextual correlations among objects both spatially and semantically. In
addition, we propose a large-scale glass surface detection dataset named Glass
Surface Detection - Semantics (‘GSD-S’), which contains 4,519 real-world RGB
glass surface images from diverse real-world scenes with detailed annotations
for both glass surface detection and semantic segmentation. Experimental results
show that our model outperforms state-of-the-art works, especially with 42.6%
MAE improvement on our proposed GSD-S dataset. Code, dataset, and models are
available at https: // jiaying. link/neurips2022-gsds/

1 Introduction

Glass surfaces, including glass doors, windows, and walls of modern architecture, are becoming
prevalent in our daily lives. Due to the ambiguity of the transparency property, the autonomous
systems of contemporary works typically lack the ability to identify glass surfaces. With such
characteristics, the peripheral environment displayed by the glass surface only contains opaque
objects and scenes from the surroundings. These result in a myriad of potential dangers caused by
the impairment of the existing object detection models in handling glass surfaces, as manifested
in previous works [1, 2]. Consequently, it brings a pressing need for a better glass detection
model. Existing methods have explored many characteristics of glass surfaces, including context [3],
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Figure 1: Existing methods [3, 4] may fail when explicit physical cues (e.g., boundaries and reflec-
tions) are unreliable. In the top row, the center region has glass-like boundaries, and existing methods
wrongly predict this region as glass. In the bottom row, as the smaller window on the right does not
have obvious reflection, it can be perplexing to detect. Our model can accurately detect glass surfaces
in both situations, which are not distracted by regions with glass-like boundaries through learning
semantics. It generalizes well even to glass regions without obvious reflection.

boundary [4], reflection [4] and polarization [5]. Although these methods generally perform well,
when the assumptions that these models make do not exist, the detection ability of these models is
significantly impeded. In addition, these methods only exploit the pixel-level binary labels for glass
surfaces, which introduces a bottleneck for the model on knowledge learning, as opposed to other
models with multi-class learning that encourage knowledge acquisition through a more diverse pool
of knowledge.

In this paper, we observe that there is often a correlated occurrence of glass surfaces with some
surrounding objects in the scene. For example, glass surfaces of ‘windows’ tend to co-occur with
‘curtains’ (or ‘blinds’) and ‘glass doors’ with ‘walls’. This prompts us to reconsider the problem from
a new perspective by incorporating knowledge on top of superficial features. Hence, we propose to
focus more on semantic context learning. Studies in cognitive neuroscience [6, 7, 8, 9] demonstrate
that surrounding objects can offer an effective derivation of contextual information. In addition,
applications of contextual information have had many proven successful impacts. Examples tasks
include salient object detection [10], domain adaptation [11], network pruning [12], image style
transfer [13], and image-text retrieval [14]. Based on these and our findings, we propose to learn and
incorporate the relationship between glass surfaces and their surrounding semantic context for glass
surface detection.

Figure 1 shows that existing methods are often misled by obscure scenes wherein explicit physical
cues such as boundaries and reflections are missing. To address these issues, we propose a novel
model exploiting semantic relations for glass surface detection. GlassSemNet adopts the encoder-
decoder architecture. The encoder component is supported by two backbones: 1) a SegFormer
network [15] for comprehensive spatial context learning, and 2) a ResNet50 network [16] for
semantic relationship learning. The semantic backbone (DeepLabV3P-ResNet50) is first pre-trained
with regular segmentation modeling to comprehend scene context reference and object relationships
in real-world settings. The backbone features from the DeepLabV3+ classifier are projected to
semantic encodings that are fed into downstream modules to serve as contextual hints for subsequent
information extraction. Specifically, two modules are proposed to achieve the ontology learning
objectives to assist glass surface detection: 1) the Scene Aware Activation (SAA) Module to guide
contextual feature modeling, and 2) the Context Correlation Attention (CCA) Module to associate
spatial context and semantic meanings of objects in the environment. Inspired by SENet [17], the
SAA Module consists of two feature selection pathways that respectively assimilate the information
concerning object locations and object categorical connotations. The CCA Module adopts the
Transformer block [18] to conduct attention modeling between the extracted backbone features.

Besides, we notice that although Mei et al. [3] and Lin et al. [4] both propose datasets for glass
surface detection, these datasets do not contain semantic data (e.g., semantic labels of different
objects around glass surfaces) to model the spatial context and high-level scene context. To further
the research on glass surface detection, we propose a new large-scale challenging semantic-aware



glass surface dataset (GSD-S) with ground truth semantic labels, not only limited to the binary masks
of glass surfaces. Our dataset consists of 4,519 images collected from various scenes. It is larger than
those proposed by Mei et al. [3] (3,900 images) and Lin ef al. [4] (4,102 images), and can largely
facilitate research in this area. Extensive experiments and evaluations on all three datasets were
conducted to validate the performance of our model.

Our contributions can be summarized as follows:

* We propose a strategy to apply semantic relationship modeling to cognitively infer the
correlation between glass objects and everyday objects for glass surface detection.

* We present two novel deep learning modules to capture long-range spatial and implicit
semantic dependencies, with results being substantiated by thorough studies.

* We have built a large-scale dataset, which has complex and challenging scenes with semantic
contexts. It can serve as a benchmark for performance validation on future models.

* We have conducted extensive experiments to evaluate our model’s robustness and show that
it outperforms state-of-the-art methods on glass surface detection.

2 Related Work

Transparent Object Detection. Transparent Object Detection aims to identify glass-made objects,
specifically with bounded shapes such as glasses and glass bottles; occasionally, the task also
accommodates window panels. Existing works approached this task by leveraging the bounded shapes
to localize the position of prospective transparent objects. The methods range from as simple as
adopting an encoder-decoder structure to extract boundary [19, 20, 21] and surface normal [22]. Light
polarization was utilized to capture the rotation of light waves from a Physics perspective [23] and
multi-view stereo images to generate depth maps that further outline the object shape information [23].
However, glass panels with flat surfaces usually do not possess the boundary characteristic, which
induces an even more challenging obstacle for detection models.

Context-Aware Detection. Context-aware methods tackle the limited receptive field bottlenecks
of convolutional kernels. Most works employed auxiliary operations such as dilation [24, 25] and
pooling [26] to enlarge the receptive field such that it gains more global contextual information. More
specific solutions that are tailored for various types of surface detection also follow this fashion
of contextual learning, such as for mirror surface [27, 28], and glass surface [3, 4]. Nevertheless,
these methods are yet another feature aggregation strategy that leaves behind the implicit reasoning
embedded in the network learning and rarely exploits the explicit semantic relationship.

Attention-based Detection. Attention mechanism from [29] enables the modeling to be more
specific and oriented towards meaningful context. Early works used matrix formulation to construct
such attention purpose [26, 30, 31]. A boost in performance is nurtured by [32], which actualized
the ‘transformer’ concept in Computer Vision tasks. Nonetheless, it is still in the form of spatial
context, which relies on semantic feature extraction from each local patch. [33, 34] proposed novel
strategies to instead focus on semantic context to study the relationships between objects and scenes
for semantic meanings, which served as an inspiration for our work to utilize semantic dependency.
Subsequent work [35] swiftly merged the ‘transformer’ concept and semantic category embedding in
transparent object detection. However, the model is constrained to model relationships between a few
types of transparent objects, e.g., eyeglasses, bowls, freezers, and windows. This method completely
ignores and disposes of the potential of semantic meanings between object categories and scenic
information; we aim to fill the gap by emphasizing contextual relationships.

3 Proposed Dataset

We acknowledge that there exist numerous datasets [36, 37] that are dedicated to semantic seg-
mentation tasks. Since most of them are augmented for everyday objects and thus have a general
classification purpose, more refined labelings would be required. Consequently, a rectified dataset
that caters explicitly to glass surface detection concerning semantic context is still in need. On the
other hand, [3] and [4] are among the earliest teams who pioneered the ‘glass detection’ studies
and contributed large-scale glass datasets. While half of [4]’s GSD dataset was assembled from



Table 1: Composition of our proposed GSD-S dataset. We collect glass images from four existing
RGB image datasets with semantic annotations. Note that these datasets initially lack refined
annotations of ground truth glass surface masks. When constructing our dataset, we re-labeled the
GT masks for the glass surfaces.

Dataset Whole Train Test

SUN RGB-D [38] 1,203 920 283
2D-3D-Semantics [39] 600 488 112

Matterport3D [2] 1,206 992 213
COCO-Stuff [37] 1,511 1,511 N/A
Total 4,519 3911 608

Figure 2: Preview of the GSD-S Dataset. Triplets of (RGB images, semantic maps, overlaid GT mask
of glass surfaces).

existing semantic segmentation datasets (e.g. [36, 37]), [3]’s GDD dataset was constructed from
manual collection and organization with only ground truth glass masks. We herewith propose a new
Semantic-Aware Glass Surface Detection (GSD-S) dataset, which is accompanied by polished ground
truth ‘glass surface’ masks along with semantic segmentation ground truths, with the hope that this
contributes to further extensions.

Dataset Composition. The GSD-S dataset is scrupulously organized from existing semantic seg-
mentation datasets [40] with the corresponding ground truth annotation carefully refined since the
glass mask labelings in original versions were in general inconsistent. Examples of ambiguous mask
labeling include glass areas being segmented into different categories of surrounding objects due
to the glass surface transparency; and glass surfaces that were ignored and treated as part of the
larger subject, such as cupboard (glass door), car (glass window), table (glass table). We processed
4,519 images, with 3,911 training images and 608 testing images altogether. The split between
training and testing sets strictly follows that of the original datasets whenever possible (subset from
Matterport3D [40] was randomly sampled). Table 1 gives an overview of the mentioned distribution.
Figure 3 displays the object category distributions of 43 classes in our GSD-S dataset. Both training
and testing sets follow similar distributions. The area ratio of GSD-S is distinctively small compared
to the other datasets due to the consideration that more semantic context can be included, which
allows comprehensive scene context relationship modeling.

proportion
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Figure 3: Dataset Statistics: (a) class distribution, and (b) area ratio.
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Figure 4: Model Architecture. We first feed the input image into two backbones to capture semantic
knowledge, and spatial location features separately. Together with the semantic encodings, low-level
features first get selectively activated by the SAA Module with respect to the decoupled features. The
CCA Module is placed at a higher level to learn the relationships between contextual meanings and
locations of objects. Features from multiple stages are aggregated by the UPerNet decoder to produce
the output map, along with the intermediate feature maps for supervision.

4 Proposed Method

Figure 4 illustrates the proposed model’s architecture. The input image is first fed into two backbone
networks for spatial and semantic feature extraction. To bridge up upstream and downstream module
features, we introduce the semantic encodings (fsem_encod € R™¢, where nc = number of object
categories = 43) generated by the semantic backbone into the SAA and CCA Modules. The collection
of enhanced feature maps output by our two novel modules are processed by the UPerNet [41]
decoder network. Specifically, with output features produced by SAA and CCA Modules, the decoder
which adopts the Feature Pyramid Network structure was configured in accordance with the original
paper: Internal Channel Number = {128, 256, 512, 1024}, Linear Layer Dimension = 512, Pooling
Scales = {1, 2, 3,6}.

4.1 Backbone Networks

The backbone networks complement each other in that we hope to explicitly leverage spatial and
semantic features. The spatial-wise attention in the SegFormer backbone offers insight into each
object’s geographic information along with corresponding proximity. This considers that objects can
arise in different regions in the picture under various types of circumstances. For example, glass
windows of commercial buildings that situate in different corners of the scene. Despite the spatial
distance, they have hidden dependencies and should belong to the same category. Meanwhile, glass
surfaces can appear in the form of a ‘glass door’ in a corner and a ‘glass table’ in another. Given
the different forms of existence on top of varying physical shapes, we need to devise the conceptual
meanings such that the model can better differentiate the semantic categories while correlating the
implicit relationships among objects. The SegFormer [15] backbone comes into play with its capacity
to capture long-range dependencies and correlate spatial features with attention. With its lightweight
capacity, the ResNet [25] semantic backbone serves as an auxiliary semantic context aggregator.
Concretely, the integration of both paths will enable the differentiation of object representations and
correlation on object dependency. According to empirical results (Section 5.3), we segregate the
backbone feature layers in terms of low-level f; for [ = {1, 2, 3} and high-level fj, for h = 4 features
respectively for SSA and CCA Modules. The low-level features are used for context and object
differentiation as they retain high-resolution spatial context and thus are effective for fine-grained
details. The high-level features embedded with richer and abstract context information are used for
correlations on category-specific knowledge.

4.2 Scene Aware Activation (SAA) Module

Inspired by [42], the information contained in feature maps from each layer can be further reinforced
through selection and activation operations. Compared to [42], which only considers generic convo-
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Figure 5: The SAA Module takes low-level backbone features to activate and discriminate object
meanings. Higher-level features are used for contextual information correlation.

lutional layers, we decouple the enhancement process into respective spatial and semantic paths to
suit our contextual learning settings.’

f ERHXWXC N f/ 6RHXWX1
sp sp
fse c RHXWXC N f;e c RncXC
ACtantiO’fl(fsp, fse; fsem_encod) = (fap X ;p) ® (fse X (f;e + fsem_encod)/)

Given the spatial backbone features f),, it would be first compressed into f;p using Global Channel
Pooling (‘GCP’) operations with respect to channel dimension before getting projected back onto f,,.
For f., it would be compressed spatially using Global Spatial Pooling (‘GSP’) before being flattened
(i.e. fse € REWXC) Tt then will be transformed into f/, using a ‘Multi-Layer Perception” (‘MLP’)
operation, with the number of channels changing from originally HW to nc = 43 (number of classes).
After that, these transformed features will be integrated with the semantic encodings from the semantic
backbone. This insertion of contextual knowledge, indicated by the ‘Semantic Encoding’ (‘SE’)
stage, colored in pink in Figure 5, fosters the subsequent refinement modules to be aware of the object
correlations for better target localization. Note that the resultant (f, 4 fsem_encod) € R™*C will be
re-converted back into R?"W*¢ through MLP and reshaped into the same shape as f,, € R7*Wx¢
before the final projection. Lastly, ® indicates the arithmetic fusion operations to integrate the
processed spatial and semantic features, as detailed in Figure 5(a).

4.3 Context Correlation Attention (CCA) Module

Witnessing the success of ViT [32], the attention mechanism significantly promotes the modeling
efficiency on long-range dependency, enabling objects in any region to be thoroughly analyzed.
Existing methods generate the (query, key, value) triplets from single input to achieve self-attention.
We propose to bifurcate the attention procedure with respect to spatial and semantic features to model
the correlation between objects of different categories and their corresponding locations.

fop € REXWXC () ¢ REWXC

sp

fse c RHXWXC N [K c Rnch; Ve Rnch]

Q(K + fsemfencooi)T
Vdy

Similar to the preprocessing performed for SAA Module, spatial and semantic features f,, and

fse are first converted to {Query, Key, Value} triplet through flattening and channel compression.

Specifically, the ‘Key’ and ‘Value’ features will go through transformation[17] (indicated by the

self-loop in blue). Semantic encodings are then reinforced into these transformed bottleneck layer
features before conducting feature attention modeling.

Attentzon(Q, K7 Va fsemfencod) = softmax( )(V + fsemfencod)

3Formulaic details have been omitted for brevity.



Table 2: Evaluation results on GDD and GSD.
Dataset GDD GSD
Methods Venue IOUt Fz1t MAE| BER| IOU? Fz1 MAE| BER|
PSPNet [48] CVPR 2017 0.792 0.875 0.132 11.51 0.703 0.834 0.110 10.66
BDRAR [49] ECCV 2018 0.800 0.908 0.098 9.87 0.759 0.860 0.081 8.61

BASNet [50] ICCV 2020 0.808 0.891 0.106 937 0.698 0.808 0.106 13.54
MINet [51] CVPR 2020 0.844 0919 0.077 740 0773 0.879 0.077 9.54
GateNet [52] ECCV 2020 0.817 0.931 0.073 8.84 0.689 0.898 0.073 10.12

MirrorNet [27] ICCV 2019 0.851 0.903 0.083 7.67 0.742 0.828 0.090 10.76

PMD [28] CVPR 2020 0.870 0930 0.067 6.17 0.817 0.890 0.061 6.74
GDNet [3] CVPR 2020 0.876 0.937 0.063 562 0790 0.869 0.069 7.72
GlassNet [4] CVPR 2021 0.881 0932 0.059 571 0.836 0901 0.055 6.12
Ours 0.908 0.950 0.045 434 0856 0.920 0.044 5.60

S Experiments

5.1 Implementations

Specifically, the SegFormer backbone adopted variation BS of Mix Transformer encoders (MiT-
B5) The model is coupled with pre-trained weights for the purpose of transfer learning. The
ResNet backbone is based on PyTorch’s DeeplabV3-ResNet50 model [25] pre-trained on COCO
train2017 [43] with only 21 categories from Pascal VOC [44]. We further trained the model using
our GSD-S dataset to introduce a more diverse set of object categories for better semantic extraction
capacity. Note that the semantic backbone after pre-training is fixed and isolated from subsequent
training processes for better glass surface detection, lest additional information would distort the
learned semantic representations. Kaiming uniform initialization [45] is used before the model was
trained on an NVidia RTX 2080Ti GPU. The input data is first uniformly resized to the size of 384 x
384 before applying normalization. A joint loss, which is a combination of binary cross entropy and
Lovasz-Softmax loss [46], was used to supervise the intermediate feature maps (i.e. layers 2 and 4)
and final output. The prediction evaluation is accompanied by Fully Connected Conditional Random
Fields (CRF) [47] technique for binarization refinement. The evaluation metrics include intersection
over union (IoU), Mean Absolute Error (MAE), maximum F-measure (Fg), and balance error rate
(BER).

5.2 Comparisons

We evaluated GlassSemNet against 13 other latest methods, including PSPNet [48], DeepLabV3+ [62],
PSANet [54], DANet [55] for generic semantic segmentation, and SCA-SOD [10] for Salient
Object Detection; recent avant-garde models that utilize transformer technique such as SETR [57],
Segmenter [58], Swin [59], ViT [32], SegFormer [15], Twins [61]; and glass surface detection models,
GDNet [3] and GlassNet [4]. These methods are re-trained on GDD, GSD, and GSD-S, following the
default training settings stated in the original papers. Table 2 and Table 3 outlines the quantitative
performance on the three glass detection datasets concerning the four evaluation metrics, which
shows that GlassSemNet gives a major performance increase compared to most models. Compared
to the second best model i.e. GlassNet [4], GlassSemNet surpasses with an improvement of 4.44%,
4.75%, 42.6% and 7.58% respectively for IOU, Fg, MAE, and BER on GSD-S. On the other hand,
the significant disparity illustrates the challenging nature of our dataset since GSD-S has a relatively
small area ratio for glass surfaces, thus giving more room for a diversified set of additional objects
that offer richer semantic context. While previous methods, e.g. GDNet, are not completely catered
for such assorted scenarios, GlassNet stands out with its Rich Context Aggregation Module. However,
with the assistance of an understanding of intricate scene context, the performance of GlassSemNet
is further elevated.

Figure 6 shows the qualitative comparisons of our method with the state-of-the-art. Existing methods
that rely on boundary features [3] and contextual contrasts [4] often find the scene confusing with the
presence of diverse object categories. In contrast, GlassSemNet can handle these complex cases and



Table 3: Evaluation results on GSD-S.

Methods Venue IOUtT Fgt MAE| BER|
PSPNet [48] CVPR 2017 0.560 0.679 0.093 13.40
DeepLabV3+[53] CVPR2018 0.557 0.671 0.100 13.11
PSANet [54] ECCV 2018 0.550 0.656 0.104 12.61
DANet [55] CVPR 2019 0.543 0.673 0.098 14.78
SCA-SOD [56] ICCV 2021 0.558 0.689 0.087 15.03
SETR [57] CVPR 2021 0.567 0.679 0.086 13.25
Segmenter [58] ICCV 2021 0.536  0.645 0.101 14.02
Swin [59] ICCV 2021 0.596 0.702 0.082 11.34
ViT [60] ICLR 2021 0.562 0.693 0.087 14.72
SegFormer [15] NeurIPS 2021 0.547 0.683 0.094 15.15
Twins [61] NeurIPS 2021 0.590 0.703 0.084 12.43
GDNet [3] CVPR 2020 0.529 0.642 0.101 18.17
GlassNet [4] CVPR 2021 0.721 0.821 0.061 10.02
Ours NeurIPS 2022 0.753 0.860 0.035 9.26

Ours (v2) 0.757 0.856 0.035 8.86

Figure 6: Existing methods tend to mis-detect non-glass regions due to some distractions (e.g.,
window blinder in the 1°* row and open area in the 3"¢ and 4*" rows). Our model can accurately
determine the glass regions by learning their correlation with the surrounding semantics.

correctly segment the glass regions. We also conducted additional tests on real-world outdoor scenes
for robustness in terms of generalization, which proved the effectiveness of our model.

5.3 Ablation Study

Ablation study was conducted to validate the contribution of each module, as detailed in Tables 4-
8. Note that ‘BB’ refers to the backbone features fs, and f,. while ‘SE’ refers to the ‘Semantic
Encoding’ insertion into the backbone features as illustrated in Figure 5.

Split Level and Attention Encoding Formulation. We started by tuning the threshold of low- and
high-level feature segregation (Versions A - C, D - Final in Table 4). For instance, we changed the
module inputs.

from  SSA(fiow) Where low = {1, 2} and CCA(frs4r) Where high = {3, 4} (Ver. B)
to SSA(fiow) where low = {1, 2, 3} and CCA(frign) where high = {4} (Ver. C).

A mild degradation is observed in IOU, Fg, and MAE. On the other hand, we compared the two
options of embedding vectors (Q, K, V) assignment. The initial trial designates spatial features to



Table 4: Ablation study (Split and QKV).
Version  Split SSA CCA (SpatiallSemantic) 10Ut Fg1 MAE] BER|

A 11234 BB +SE BB + SE (QVIK) 0.748 0.853 0.0360  9.66
B 12134 BB + SE BB + SE (QVIK) 0.750 0.850 0.0359 9.39
C 12314 BB +SE BB + SE (QVIK) 0.749 0.847 0.0366  9.27

D 11234 BB + SE BB + SE (QIKV) 0.747 0.853 0.0346 9.62
E 12134 BB + SE BB + SE (QIKV) 0.749 0.852 0.0358 9.41
Final 12314 BB + SE BB + SE (QIKV) 0.753 0.860 0.0351 9.26

be {Query, Value} embeddings and semantic backbone features to be “Key”” embeddings (Ver. A
- C). The roles are then switched in the subsequent trials (Version D - Final), where performance
gains are observed. We deduced that after the correlation mapping between Q and K, using semantic
backbone features as V allows a more variegated query space than that by spatial features, which
only has information in terms of separate patches over the scene.

Semantic Encoding Enhancement. Category-specific information was asserted iteratively into SSA
and CCA Modules (Table 5). Compared to other partial insertions (Ver. A - C), The positive effect is
backed by apparent enhancement when the encodings were applied on both modules (Ver. D).

Table 5: Ablation study (Semantic Encoding).
Version  Split SSA CCA (SpatiallSemantic) 10UT Fg1 MAE] BER|

A 1234 BB BB (QIKV) 0751 0.856 0.0350 9.30
B 12314 BB +SE BB (QIKV) 0.746  0.849 0.0363  9.60
C 1234 BB BB + SE (QIKV) 0747 0.854 0.0361 9.84

Final 12314 BB + SE BB + SE (QIKV) 0.753 0.860 0.0351 9.26

Proposed Modules. As manifested by the results upon module removals (Table 6), the results
demonstrate that the mutual presence of both SSA and CAA Modules can offer a certain advancement
on all metrics compared to the cases when either one was missing. This confirms the significance
of the SSA Module in object characteristic differentiation, as well as that of the CAA Module on
context correlation.

Table 6: Ablation study (SAA and CCA).
Version  Split SSA CCA (SpatiallSemantic) IOUtT Fgt MAE| BER|

A 12314 X BB + SE (QIKV) 0.747 0.854 0.0364 9.40
B 12314 BB + SE X 0.747 0.855 0.0361  9.88
Final 12314 BB + SE BB + SE (QIKV) 0.753 0.860 0.0351 9.26

Semantic Backbone. To verify the effectiveness of our GSD-S Dataset, we vary the configurations
on GSD-S fine-tuning (“train”’) and parameter update (“fix”’) of the semantic backbone network. In
general, as can be seen from Table 7, fine-tuning on GSD-S (Ver. B and C) does indeed offer an
incremental performance upgrade, regardless of the parameter update fixing. However, fixing the
gradient resulted in a comprehensive boost across all the evaluation metrics. This is in accordance
with our hypothesis that semantic priors from pre-training can be better preserved from information
distortion by downstream tuning and thus provides more accurate and insightful contextual meanings.

Cross-Dataset Analysis. To illustrate the effectiveness of our proposed dataset GSD-S for model
training, we conducted cross-dataset analysis[63] on GSD [4] (Table 8) by training on out-of-
distribution data, i.e. GDD [3] and GSD-S. The result showed that the model trained on GSD-S
generalizes better than that on GDD.



Table 7: Ablation study (Semantic Backbone).

Version  Split SSA CCA (SpatiallSemantic) IOUT Fg1t MAE| BER|

A 12314 BB+ SE BB+ SE (QIKV Xtrain X fix) 0.739 0.847 0.0377 10.06
B 1234 BB +SE BB+ SE (QIKV X train v fix) 0.744 0.851 0.0361 9.70
C 1234 BB +SE BB+ SE (QKV v train X fix) 0.747 0.855 0.0356  9.52
Final 1234 BB+ SE BB+ SE(QIKV v train v fix) 0.753 0.860 0.0351 9.26

Table 8: Ablation study (Cross Dataset).
Train Test 10Ut Fgt MAE| BER|

GDD GSD 0.701 0.782 0.129 11.20
Glass-Seg GSD 0.774 0.882 0.0857 9.44

5.4 Limitation

Our model would have constrained performance under some challenging circumstances. For instance,
in the presence of a “mirror” where there exist high-resolution reflections, scenery along with clear
semantic context is reflected. This leads to a wrong prediction of false-positive glass surface presence
inside the mirror region (shown in the left group of Figure 7), which is admittedly unsatisfactory.
Moreover, small surfaces are often difficult to identify, given the limited space of image content
occupied. Thus, the diminished attention makes it go unnoticed (illustrated by the glass table in
the right group). This challenge applies to most models, including the semantic backbone network
and our main model. In the future, it is hoped that we can integrate different detection strategies to
alleviate this bottleneck.

Ours

Figure 7: Limitations. Our method may fail to detect glass surfaces in some very challenging scenes
with ambiguous visual semantics caused by mirrors or objects of small sizes.

6 Conclusion

In this paper, we have proposed to consider semantic knowledge in combination with spatial infor-
mation to better capture the scene context as a strategic enhancement for tackling the glass surface
detection problem. This comes with a meticulously constructed large-scale dataset with refined
ground truth masks for both glass surface detection and semantic segmentation. Thorough experi-
mentation demonstrates the capability of the SAA Module on object characteristic differentiation and
the effectiveness of the CCA Module on context correlation. Our experiments show that the proposed
model sets new benchmark records on all existing glass detection datasets, including GDD [3],
GSD [4], and our GSD-S.
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